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We consider the problem of obtaining macroscopic boundary conditions for the equa~ 
tions of a strongly nonuniform, multitemperature boundary later in a gas with trans- 
lational, rotational, and vibrational degrees of freedom and for arbitrary catalytic- 
ity of the solid surface with respect to various vibrational modes. The boundary 
conditions are analyzed on surfaces with properties favorable to flow modes with 
population inversion in the quantum equations.: 

It is well known that a rigorous derivation of macroscopic boundary conditions for gas 
flow at a solid surface is associated with a solution of the Boltzmann equation in a Knudsen 
layer. 

A method has been proposed [i] for solution of this equation in asymptotically different 
flow regions with two-temperature vibrational relaxation present. An approximate solution 
was given [2] for the determination of boundary conditions in the flow of a monatomic gas at 
an equilibrium wall. The analogous problem for a nonequilibrium surface with two different 
temperatures has been discussed [3, 4]. The results of these papers are related to the flows 
of diatomic gases, since only a single internal degree of freedom was taken into considera- 
tion in them. The question of the possible existence of actual surfaces with vibrational 
nonequilibrium remained unanswered until recently. Nonetheless, it has already been shown 
[5] that in nonequilibrium flow of nitrogen in a boundary layer around a flat, thermally 
insulated surface, the translational--rotational temperature (T w) and the vibrational temper- 
ature (Tiw) of the wall may be markedly different. 

A study of vibrational relaxations of multiatomic gases on solid adsorbing surfaces 
showed [6] that the rate of dampingof vibrational motion in various vibrational modes of 
linear molecules such as C02, NO2, etc., depends on their orientation and residence time 
in the adsorbed state. 

For the greater part of the time, the axes of a C02 molecule are parallel to the adsorb- 
ing surface; in this case, one of the vibrations of the deformation mode which is oriented 
perpendicularly to the surface is rapidly damped. 

Because of Fermi resonance, this damping is propagated to all vibrations of the symmetric 
and deformation modes. Since antisymmetric vibrations are practically conserved in this 
case, a nonequilibrium distribution is created with respect to the vibrational energy in 
the various vibrational modes. From the macroscopic point of view, this means that there 
are flow modes with significantly different wall temperatures Tw and Tiw (i=l, 2, 3, 3...), 
where the Tiw may also differ from one another. There is interest in the problem of obtain- 
ing boundary conditions for flows of multiatomic gases with several vibrational degress of 
freedom. 

i. We consider this problem as applied to the equations of a boundary layer for arbi- 
trary catalyticity of the surface over which the flow occurs. The asymptotic method for the 
solution of the generalized Boltzmann equation for a diatomic gas [i] can be extended to 
multiatomic gases such as C02 for example, we assume that there are various relaxation proc- 
esses ~t, IVt ~ 51 in the gas which in the scale of the mean free path ~ ~ ~t correspond 
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to resonance exchange of translational, translational-rotational, and vibrational energies. 
In addition, there is inelastic exchange of translational and vibrational energies (Itl) and 
intermodal vibrational exchanges Ill. Of practical interest is the case where the inequality 

It N I v t " l s < < l t s ' - ' L ~  lss ( l . l )  

exists, where L is a typical hydrodynamic dimension. Then within the confines of the theory 
of multitemperature relaxation and assuming the satisfaction of the principle of detailed 
balance for all types of collision, we obtain the generalized Boltzmann equation in the 
following form [7]: 

Kn [ o/._z_ + ~--~ai - ,~.%)'~' f (i ' i ; -- i i.) dP' ] = E f (i ' i; -- ih) (1.2) 

where Kn is the Knudsen number; c is the intrinsic velocity of the molecules; ~',~ 
(vj) (A) 

a r e  t he  p o r t i o n s  o f  t h e  c o l l i s i o n  i n t e g r a l s  c o n n e c t e d  w i t h  t h e  e l e m e n t a r y  p r o c e s s e s  i n  t he  
r i g h t  and l e f t  p o r t i o n s  o f  t h e  i n e q u a l i t y  ( 1 . 1 ) .  Summation o v e r  V i n  Eq. ( 1 . 2 )  i n c l u d e s  
t h e  c o n t r i b u t i o n  o f  r o t a t i o n a l  d e g r e e s  o f  f r e e d o m  and summation o v e r  I ,  t h e  c o n t r i b u t i o n  o f  
v i b r a t i o n a l  d e g r e e s  o f  f r e e d o m ;  dp '  and dP a r e  a b b r e v i a t e d  n o t a t i o n  f o r  m u l t i d i m e n s i o n a l  
i n t e g r a t i o n  o v e r  t he  p a r a m e t e r s  o f  b i n a r y  c o l l i s i o n s .  

The e q u i l i b r i u m  d i s t r i b u t i o n  f u n c t i o n  has  t h e  fo rm 

/(o) = n ~ exp -- 2kT ] -t- - -  

V=0 

X V (V + i ) ) k T  (2V 4- l) e x p ,  --  0R V (V ~- l ) k T  ~ LM=O expX 

(1.3) 

where n is density, V is the rotational quantum number;C = c-v;l=M, N, P are vibrational 
numbers for the symmetric, deformation, and antisymmetric modes of C02; EM, EN, and Ep are 
the vibrational energies and T~, T2, and T3, the corresponding temperatures; e R = h=/21 is 
the characteristic energy of a rotational quantum. Summing Eq. (1.3) over V, su~ning the 
denominator over M, N, and P, and integrating over velocity space, one can obtain the usual 
expression for the populations of the vibrational levels, 

In the second approximation, through analogy with the case of two-temperature relaxation 
[i], the distribution function acquires the structural form 

O T  �9 �9 O v  
q~(e ~ A -~r + ]~ A(~) ~ + B : + Ddivv + G, (1.4) 

where A and A(i) are vectors; B is a symmetric nondivergent tensor; D and G are scalars. 
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The quantities A, A (i), B, D, and G are functions of n, C, Tx, T2, T3, E M, EN, Ep, and 
EV (EV=0RV(V+I)) and determine the various dissipative coefficients which can be calculated 
by solving the appropriate integral equations [i]. Since the main interest in the present 
case is the problem of determining boundary conditions for the equations of a boundary layer, 
terms associated with bulk viscosity (D div V) and relaxation pressure (G) [8, 9] in Eq. 
(1.4) will be unimportant in the following. 

2. Equation (1.4) can be written in the form 

~.~t) = _ ACu ~ --  ~ A (0 C OT~ Ou (0 Y Oy - -  BC~ Cy 7y (2.1) 

for plane flows in a boundary layer, where C x and Cy are the projections of C on the tan- 
gential and normal directions with respect to the wall; v is the component of the mean-mass 
velocity along the x axis. 

From an analysis of the exchange of vibrational energy in an adsorption layer [6], we 
assume that the gas molecules are reflected from a "nonequilibrium" wall with the distribu- 
tion (1.3) in which n=nr, T=T r Ti=Tir (r is a subscript denoting reflected molecules) where, 
in general, Tr~Tir#T w (i=l, 2, 3,...) and the Tir are different for different i. The dis- 
tribution function for reflected molecules then takes the form 

/~ = f~o) (n  = n~, T = I t ,  T i  = Ti~, u = v = 0). (2.2) 

It is obvious that the function (2.1) does not satisfy the kinetic boundary conditions 
(2.2). As in the flow of an ideal monatomic gas, therefore, it is necessary to consider a 
thick Knudsen layer on the upper boundary of which the distribution f agrees with f(0)(l + 
~e (I)) in order to determine macroscopic boundary conditions. 

In analogy with a monatomic gas [10], the generalized kinetic Boltzmann equation for the 
distribution function within the Knudsen layer can be written as 

if ] + Kn (S'S;-- SS,)dX" = E S (s 'sl-  ss,) dp, 
(v,s) (.r 

(2.3) 

where Yx and x are dimensionless coordinates normalized, respectively, to the thickness ~ of 
the Knudson layer and the characteristic length L of the body. 

Since the equilibrium distribution functions (1.3) and (2.2) satisfy Eq. (2.3) in the 
first approximation, i.e., for Kn § 0, and the function ~eN~-n<<1 [i] on the outer boun- 
dary of the Knudsen layer, we seek a solution of Eq. (2.3) in the form 

(t + VK-  (2.4) 

where 

(o) I (0) ( n ~ =  n~, T = T~, T~ T ~ ,  u = v = 0); 

i=l, 2, 3,..., ne=Pe/kTr, and Pe is the pressure at the external boundary of the boundary 
layer. 

For a rigorous formulation of the problem of determining ~(i) in the Knudsen layer we 
use (as in the case of a simple gas [8, I0]) matching of internal and external expansions. 
Then, substituting Eq. (2.4) into Eq. (2.1) and expanding the functions of f(0)(yl-->oo ) and 

5 5 4  

, we obtain the following boundary-value problem: 

c)y~ 

(p( l ) (g_>~)  = q)~l) ( y _ ,  0) + g~--~- - (g-+O)  + 2AuvV 1 ~ + ~ ' - -  - - - -  

I I  e n e 

(2.5) 

�9 ( 2 . 6 )  

(2.7) 



where y is a dimensionless coordinate normalized to the thickness ~ of the boundary layer; 
ATr, ATir , and Au are discontinuities of the gas parameters in the neighborhood of the wall: 

p(1), and p(1) 

ATT=T(y->0)--T~.; AT~r=T~(y-+0)--T~; 

A u  = u ( y - ~ 0 ) ;  V r = V2kT/m; ~ md -=- 2 - ~  ; 

Ane 2 1/-~ f /~C)q)(t)(Vl = O) i - -  s i gn  cv 
n----ff = neVr ~ ~ %de; 

are polynomials in terms of a discrete set of values of the variables [I] 

EV E r  , o ( i )  e v - - E v  p~)_ e i - - E t .  

k~l "-'w; kT i , ~ v  = kT ' - -  kT  i ' 

eV and ei are the mean rotational and vibrational energies; ~[~(D] is the linearized in- 
tegral for "fast" collisions, which are included in the left side of inequality (i.i). 

It is well known that in the case of monatomic gas, the function ~(1)(y;=0) is related 
to the quantities Au and AT r by the following exact relations [ii]: 

2 (i) @VcxBrp (Yl = 0)> = - -  Au;  (2.8) 

c2A <l) r. Xt qD ~ 1 = 0 ) > =  kT ATe. ( 2 . 9 )  
r 

Here <,T(1)> = ,I~(P (1)](~ ; U is the coefficient of shear viscosity and X t is the coefficient 
of thermal conductivity associated with translational degrees of freedom. 

We look for an analogy to Eqs. (2.8) and (2.9) for the present case of multitemperature 
relaxation. To do this, we multiply Eq. (2.5) successively by the functions Bcxcy , Acy, 
A(i)c, andthe invariants of binary collisions 

Y 
mc 2 ~pj= i, me, ~ + Ev, E~, EN, Ep. 

Averaging the composite products over velocity and internal-energy phase space and using the 
self-adjointness of the operator ~ [~(I)], demonstrated in [12], 

< q).Te [r (1) ] > = < q~(1)s [ , l  > ,  

we obtain 

-g-~y~<cyc~BT~ 2 (i)> = <%c~B.~ [~(i)]> = <T(i)~.Z' [ c r  

0 . .). <4AZ [r [4A]>; 

0 3 . 2~( i )  ( t ) .  d~2~(i),--~ 

k < % * D  = O. 

where 

Using the integral equations given in [I], we have 

0 .C2C B Ct)~ 0 ._2. ( i ) .  

o . c 2 A ( i h  (t)\ 

= <r 

<g~('> = ~ .I g*")~~ 
(v ,D 

D 3  ~--- f(O) m cycx; 
kT 

D(2i) ~(o)_ ha) = 1  %rl  , i--- 1 , 2 , 3 .  

(2.1o) 
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Converting to the integral form of Eqs. (2.10) and taking the matching conditions (2.6) 
into consideration, we obtain 

< c 2 c  - ( ' ) ' -  = 0 ) > - -  - -  aT ,o, ~ T  ty~ ~ Au;  ( 2 . 1 1 )  
r 

/'c2A "~(1)r = 0)> Xa y v ~ 1  ~T ATe; ( 2 . 1 2 )  
r 

2--(i) ( l) ;L~ 
c,,.a q) (y,  = 0)> = - -  k--~[r a T i r ;  ( 2 . 1 3 )  

<c~r162 (') (y~ = 0)> = <c~,~q)(# ) (y ~ 0)>, (2 .1 /4)  

where ~=E~-Ev; %t,%v and %i are dissipative coefficients similar to those determined in [i]. 

Equations (2.11)-(2.13) are the analogues of Eqs. (2.8) and (2.9) for the present case of 
multitemperature relaxation. In order to determine the magnitudes of the discontinuities: 
ATr, hu and hTir by means of Eqs. (2.11)-(2.13), it is necessary to know the function ~(i) 
(y1=0), i.e., the solution of Eq. (2.5). We use the modified Maxwell [Ii] for an approximate 
determination of the discontinuities, approximating the function ~(y1=0, %<0) in the 
following manner: 

S u b s t i t u t i n g  t h e  a p p r o x i m a t i o n  ( 2 . 1 5 )  i n  E q s .  ( 2 . 1 1 ) - ( 2 . 1 4 ) ,  we o b t a i n  

(2.15) 

Ou bT . OT i a n  , OT (2.16) 
h e  = ~ - y ;  ATr = ~]a'd-yy ' A T i r  = Th Oy ' n ~  - -  71, a-'-~' 

where 

~h = 

2 Pe ' 

(2~_c'v) neVr k - ~ "  25=X2 ~'t2+ =c;X2 ; 

)~i ~f-~(l  -~ 4/g)  de i . ] ds g 
l ] i =  2cinev T , Ci = ~ ;  co = - ~  d---T ; 

~e = ~.~ V~[2  (2 + Q nev,kr]-'. 

For a final determination of the desired boundary conditions, i.e., the quantities 
Ti(y-~0)=T~Tq-ATiT, and T(y-+0)=Tr~-AT, , it is necessary to know the temperatures Tir and 
T r. To determine T r in a beam of reflected molecules for a monatomic gas, one uses the so- 
called accommodation coefficients [13-15] which are introduced in the form of certain ratios 
of temperatures [13, 14] or of energy fluxes [8, 15] and which characterize the exchange 
of energy between molecules in the adsorbed state and the wall [13]. In the present case, 
one can use the following definitions for the accommodation coefficients by analogy with a 
simple gas: 

Qi(Y l  = 0 ) - - Q i r .  Q ( y l  = o ) - -  Qr 
a i  = Qi(yz = 0 ) - - Q i w '  a = Q ( y l - - O ) -  Qw' ( 2 . 1 7 )  

where 

Qi= = Q~, (Ti ,  T ,  Tw); Q~. = Q,  (T , ,  = T ,  ----- T ' 

y =  I/( ~  
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We consider the definitions (2.17). The quantity (Qi-Qir) is equal to the total normal 
flux qi of vibrational energy in mode i, and the quantity (Q-Qr) is the total flux q~of the 
translational--rotational energy mc2/2+Ev . 

In order to determine qi(Yz = 0) and q (yz = 0), we multiply Eq. (2.3) by the invariants 
E 1 and mc2/2+Ev and average the results over the phase space of velocity and the energies 

E1 and EV: 

_ / f m c  ~- ) ~s\ o, oq~ oq q-Kn + E ~  c~ = oy--~+KnQ=0; @~ ~ \  .--~ ~ /  (2.18) 

where 

---:L E, (Z' .f (s's;-ss,)+' 
\ (v ,s )  

Thus we have with an accuracy of the order of Kn 

oq~ Oq__o;  q ~ ( g ~ = - O ) = q ~ ( g = O ) ;  q ( y ~ = O ) = q ( y = O ) .  
Oyl Oyz 

(2 . !9)  

Calculating the fluxes qi(Y + 0) and q(y § 0) by means of Eqs. 
definitions (2.17) into consideration, we obtain 

%i 0ei ~zi ~ 0ei 
ci @ = 2 v E  nrvr [e~r --e~w] + ai-~(~--~-j; 

~a 38a (z ~a Oea 
c a 0y = 2 ~E nrVr [ear -- Caw] -{- a --c a --'dy 

where 

(2.6)  and taking the 

(2.20) 

ei~=ei(Tir); ei~=e~(Tw); e a = 2 k T + e v ;  

dsa 
aar=e~(Irr) ; aa~=e~(/'~); ca=d-T" 

Estimating the orders of magnitude in Eqs. (2.20), we note that the temperature T i and 
T can be determined to an accuracy of the order of ~ from the boundary conditions 

~e(o) a8~0) O~"--'!-/ [8~ 0) g~w]; ; a - - - -  ~z [E(a0) Eaw] ' 
li--@-y = 2VF ~ -- Oy 2 ~ -- (2.2i) 

where 

4 0) =~(r?)); ~)=~o(r(~ r~= rff+ o(V~); 
r = r ~~ + o ( V ~ ) ;  

/n(O)v C li = ~i/n~O)OTCi; la = ~'a; e T a; 

n~O, = Pe . VT-~ V 2kT(0----j 
kT (0) ' m " 

We then obtain 

i. e~~ e~~ for a i ~ a ~ l ;  

#y ~--- ~ = 0 for ai ~ cz ~_~ Kn; 

3. [(I e(o)~, - ~ j;~i~J "" [(i - d~ 1 , . ,  
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The set of values considered actually covers the entire range of the accommodation 
coefficients. 

We analyze the physical significance of the conditions. 

The first case corresponds to a wall at complete equilibrium, T=T~=T2=Ta=Tw. 

The second case corresponds to a completely thermally insulated wall where the temper- 
atures of the various vibrational modes may differ from one another and from the temperature 

r w [ 5 ] .  

In the thirdcase,allthe vibrational temperatures differ in value from the wall temperature T w- 

In principle, cases are possible where the wall possesses different catalyticity with 
respect to the various vibrational modes. 

In applications, surfaces which are favorable from the viewpoint of preservation of 
population inversion in gasdynamical flow may be of practical interest. For example, in 
physical adsorption of C02 molecules on a solid surface, relaxation of symmetric and defor- 
mation modes (i=l, 2) may take place in accordance with the first case, while relaxation 
of the antisymmetric mode may proceed in accordance with the second case, which is analogous 
to the vibrational relaxation processes on the surface of aerosol particles described in [6]. 

The determination of the boundary conditions in the first approximation of (2.21) does 
not require the solution of the kinetic problem involving the temperature discontinuities 
ATir or AT r. The need for the solution of such a problem arises in the following approxima- 
tion if it is necessary to differentiate T i (i = I, 2, 3,...) and T from temperatures Tir and 
T r in the reflected beam of molecules To establish these boundary conditions for the second 
approximation, we analyze Eq. (2.20) with the quantity Knfl taken into consideration. 

We consider as in Eq. (2.4) a Knudsen layer in which 

/(Yl)=/(~ =0)  + 0(~f~n)" (2.22) 

Substituting Eq. (2.22) into Eq. (2.18) and converting to integral notation, we obtain 

q~2) ~--- _ _  yl~-~(0) 27 (const)i, ( 2 . 2 3 )  

where 

~(o) = ~ (f =/ (0)) ;  q~2) = <cuEI~p(2)); [q~m/e~yr] N Kn. 

To determine (const)i, we consider the matching conditions for y,-+~ 

0~ (i) (2) 
q)(2) (Yl "-> 0,9 ) -- y2 o~](o) (Y -+ O) + YI ~ (Y ~ O) + q)e (Y"+ O) 

2 Oy~ 

( 2 . 2 3 )  a t  t h e  u p p e r  (yl--~c~) and l o w e r  (y l=0 )  b o u n d a r i e s  o f  t h e  Kuudsen  and write Eq. 
layer. Then 

__ 0 o~ <cuEi)=O; y,~y <cuExr =_ylf~(o); ay 2 

< E ,cur 2~ (y --+ 0)) = (const)i; 
<EIcu~ ~ (Yx -- 0)> = (const)i. 

Eliminating the (const) i, we obtain 

q~2) (Yl = 0) = q[2)(y ---> 0). 

In analogy with the preceding, we obtain for the quantity 
q(2) / /me 2 = ~eul---~-}- Ev)r > 
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the result q(~)(g~=O)=q(~)(y--+O).  

Thus in a weakly nonequilibrium Knudsen layer, the conditions for the conservation of 
the energy fluxes qi and q are valid to terms of the order of Knr 

~2) q(2) 
The values of the fluxes q and can be determined by the Chapman--Enskog method, 

OT (o) 
�9 @ ; 

q{2). (e -~- 0) = ~,a (AT) __~v + ;%, _ a T  (~ (r(o)~ _aT + ~ A u ~ , o A v  o~ (2.24) 

where 

AT = T (g -+  0) - -  T <~ (g -)- 0); AT~ = T~ (g -+  0) 

- - T ~  ~  T~ ~ T (~ 

satisfy Eqs. (2.21). 

Substituting Eq. (2.24) into Eq. (2.19) and taking AT r and ATir into consideration 
[see Eq. (2.16)], we obtain the following boundary conditions for the corrections of AT and 
AT i : 

In the region a~Nl, aNi: 

AT~ = [n~/l~ -§ (t/cq - i) 2 I/ZI 4~;~ 

aT 
A T  = + - -  i )  2 zo 

In the region a~,-.~| I / ~ ,  ~z,---,]/Hn: 

-~- ,o(o) 2T (~ r 4- 0~i; 

%(Ar-Ara AT'--Ar : 
�9 Oit 

In the region ~i<<Kn, a<<Kn: 

_ _  Ou ----. 

)~ ay = 2 v-~  ne UT -- = ay 

The expressions obtained solve the problem of determining the boundary conditions for the 
equations of a multitemperature boundary layer with strong vibrational nonequilibrium which 
can be used in evaluations of the role of boundary layers in flows of COa+N2+H20(He) mix- 
tures. Actually, Tw=Tiw in grids ordinarily used and loss of amplification in boundary 
layers amounts to 15-20% [16]. In addition, these losses are propagated into the flow re- 
gion in the cavity because of an expanding viscous wake. If indeed the wall is a nonequi- 
librium wall (Tw#Tiw) , the nonequilibrium sublayer occupies a considerable portion of the 
thickness of the boundary layer even when T~Ti~ at the external boundary [5]. 

Since T~•162 i=1,2; T~<<Ti~, i ~ 3,4), in a nonviscous flow core, inverse 
population and amplification may be maintained over the entire flow region with a nonequi- 
librium wall. 

. 
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